
accelerated paper

Systematic Method for the Kinetic Modeling of Temporally
Resolved Hyperspectral Microscope Images of Fluorescently
Labeled Cells

PATRICK J. CUTLER, DAVID M. HAALAND, and PAUL J. GEMPERLINE*
Department of Chemistry, East Carolina University, Greenville, North Carolina 27858 (P.J.C., P.J.G.); and Sandia National Laboratories,

Albuquerque, New Mexico 87185-0895 (D.M.H.)

In this paper we report the application of a novel method for fitting kinetic

models to temporally resolved hyperspectral images of fluorescently

labeled cells to mathematically resolve pure-component spatial images,

pure-component spectra, and pure-component reaction profiles. The

method is demonstrated on one simulated image and two experimental

cell images, including human embryonic kidney cells (HEK 293) and

human A549 pulmonary type II epithelial cells. In both cell images,

inhibitor kappa B kinase alpha (IKKa) and mitochondrial antiviral

signaling protein (MAVS) were labeled with green and yellow fluorescent

protein, respectively. Kinetic modeling was performed on the compressed

images by using a separable least squares method. A combination of

several first-order decays were needed to adequately model the photo-

bleaching processes for each fluorophore observed in these images,

consistent with the hypothesis that each fluorophore was found in several

different environments within the cells. Numerous plausible mechanisms

for kinetic modeling of the photobleaching processes in these images were

tested and a method for selecting the most parsimonious and statistically

sufficient model was used to prepare spatial maps of each fluorophore.

Index Headings: Hyperspectral confocal microscopy; Fluorescence imag-

ing; Kinetic modeling; Human embryonic kidney cells; Human A549

pulmonary type II epithelial cells; Inhibitor kappa B kinase alpha;

Mitochondrial antiviral signaling protein; Separable least squares.

INTRODUCTION

The development of new technologies provides the oppor-
tunity to collect larger and ever more complex data sets. These
new forms of data facilitate the study of more intricate systems
and the development of new methods for obtaining valuable
information from these complex data sets. Advances in
detectors and other such technologies have brought about a
renaissance in fluorescence microscopy.1,2 Our hyperspectral
confocal fluorescence microscope can be used to acquire
spatial and temporal hyperspectral images with diffraction-
limited resolution.3 The images produced by this instrument are
capable of resolving multiple fluorophores with high spectral
and spatial overlap when analyzed with multivariate curve
resolution (MCR) techniques.4,5 The analysis of temporally
resolved hyperspectral microscope fluorescence images pro-

vides the opportunity to follow biochemical processes at a
subcellular level as a function of time. This investigation is
focused on developing and applying new methods for the
kinetic modeling of these temporal hyperspectral fluorescence
images.

Fluorescent proteins are frequently used to label proteins in
vivo to study protein expression and to monitor their spatial
locations in the cell.6 It is often advantageous to observe
several fluorescently labeled proteins simultaneously. Due to
high spectral overlap of the emission spectra of some
fluorescent proteins, filter-based microscopes are limited in
the number and specific combinations of fluorescent proteins
that can be observed simultaneously. This limitation can be
overcome by obtaining hyperspectral microscope images that
are analyzed with MCR techniques.3

To develop the use of kinetic modeling in the investigation
of temporally resolved hyperspectral images of fluorescently
labeled cells, we initially focused on the modeling of the
kinetic process of photobleaching of multiple fluorescing
species in the cells. A key problem with performing kinetic
modeling on a hyperspectral fluorescence image is that the
concentrations of all modeled species at time zero (t0) are
unknown. In typical multivariate kinetic modeling algorithms,
the initial concentrations of all species must be known;7–9

therefore, a recently developed kinetic modeling approach
based on separable least squares10 (SLS) has been extended
and implemented in this investigation. Note that although this
approach has only been applied in this investigation to systems
undergoing photobleaching, the approach is general and can be
applied to any multivariate kinetic data that follow a first-order
reaction.

Kinetic modeling can be performed on several multivariate
data sets simultaneously,11–13 but due to memory and time
constraints there are limitations to the number of multivariate
data sets that can be analyzed simultaneously. A typical
temporal hyperspectral microscope image acquired by our
instrument has the dimensions 200 pixels by 200 pixels by 512
wavelengths by 18 time slices, producing about 3 GB worth of
data when represented as 8 bytes per point. In this scheme, a
complete multivariate spectroscopic data set measured as a
function of time is acquired for each pixel. For an image of 200
3 200 pixels, there are 40000 pixels and thus 40000
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multivariate data sets that can be analyzed simultaneously, one
for each pixel. Due to memory and time limitations, it is not
practical to analyze all 40000 temporally resolved multivariate
data sets simultaneously with our current kinetic modeling
approach. Therefore, we compress the data to a manageable
size while retaining a maximal amount of useful and diverse
information. Intelligent pixel selection and signal averaging are
used to compress the hyperspectral confocal images to a
manageable size in this investigation.

A systematic approach to the kinetic modeling of temporally
resolved hyperspectral microscope fluorescence images has
been developed in this work. The main steps in this systematic
approach are (1) preprocessing the data, (2) data compression,
(3) kinetic modeling of the compressed image, (4) model
selection, and (5) projection of the compressed image back to
the full image. Describing this systematic approach and its
application to several temporally resolved hyperspectral
fluorescence images of fixed fluorescently labeled cells is the
main focus of this manuscript.

THEORY

In order to minimize computation times and memory
utilization for the kinetic modeling of the hyperspectral image
data, spatial data compression is implemented. The compressed
data is then kinetically modeled using a technique based on the
separable least squares (SLS) algorithm previously reported.10

An extension of this SLS technique, which incorporates several
first-order decays for each fluorescent specie in the image, has
been implemented in this work.

Spatial Image Compression. The spatial compression of
temporally resolved hyperspectral image data is performed
using the initial time slice. The steps developed in this work for
spatial compression include (1) thresholding the image, (2)
selection of a key set of maximally dissimilar spectra,14 and (3)
subsequent averaging of spectra found to be similar to the key
set of spectra.

Image Thresholding. An estimate of the signal-to-noise
ratio (S/N) is used to threshold the hyperspectral image data.
The preprocessed spectra (see Experimental section) in each
pixel of the initial time slice are filtered using a three-point
binomial smoothing filter.15 The residuals between the
smoothed and preprocessed spectra are calculated for each
pixel. The S/N of each pixel is estimated by dividing the mean
of the preprocessed spectra for each pixel by the standard
deviation in the residuals for each pixel. The S/N threshold was
empirically determined and set to 1.3. All pixels with S/N
above 1.3 are retained and pixels equal to or below are
discarded.

Selection of a Key Set of Maximally Dissimilar Spectra.
Key set factor analysis is a method for selecting a set of rows
(or columns) in a data set that are most orthogonal to each
other. This method was initially proposed and demonstrated by
Malinowski16 who later refined this method into iterative key
set factor analysis.14 Our selection of a key set of maximally
dissimilar spectra (pixels) is based on this iterative key set
factor analysis.

The first time slice from the temporal hyperspectral image is
used for the selection of a key set of maximally dissimilar
spectra. The initial step is to perform principal component
analysis17 (PCA) reconstruction to improve the signal-to-noise
for the spectra in the first temporal slice. The spectra are
compressed to k þ 1 principal components, where k is the

number of apparent principal components. The number of
principal components, k, is determined by inspection of a scree
plot, shapes of loading vectors, and PCA of spectral residuals.
The PCA compressed spectra are then used for the remaining
steps in the selection of a key set of maximally dissimilar
spectra. It is important to use information from PCA when
selecting the size of the key set of maximally dissimilar spectra.
If the size of the key set of maximally dissimilar spectra
exceeds the number of apparent principal components, then
some of the spectra selected by the process presented here will
most likely be noisy, low intensity spectra.

An initial key spectrum, sp1, is selected as the most intense
spectrum that has the maximum difference from the mean
spectrum. The next step is to select a spectrum from the
remaining set of spectra that is maximally dissimilar from sp1.
To perform this task (m � 1) 2-by-2 pair-wise variance-
covariance matrices are computed between sp1 and all other
PCA compressed spectra in the first time slice. Equations 1 and
2 show the general form for the variance-covariance matrix, R,
for m spectra:
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where sk,i is the kth response from the ith spectrum and n is the
number of response measurements acquired per spectrum.

The determinant is computed for each of the (m � 1)
variance-covariance matrices, and the spectrum, sp2, that
corresponds to the largest absolute value of the determinants
is added to the key set. This process yields the pair of spectra
that are the most orthogonal. Subsequent spectra are added to
the key set by the step-wise selection of the next spectrum that
yields the maximum determinant of the variance-covariance
matrix for an increasing number of spectra until the desired
number of spectra sp1, sp2, . . . , spi are selected. The number of
key spectra selected is equal to the number of PCA components
required to represent the data down to the noise level. This
initial key set sometimes needs refinement, as spectra selected
early in the sequential process may have unintended correla-
tions to spectra selected later in the process.

The key set of spectra is then refined by performing a step-
wise replacement of each key spectrum sp1, sp2, . . . , spi with
spectra found to further maximize the determinant of the
corresponding variance-covariance matrix. This process is
repeated until the key set of selected spectra remains constant
through an entire cycle of the step-wise replacement process.
The resultant spectra are the key set of maximally dissimilar
spectra.

Selection of Maximally Dissimilar Regions and Averag-
ing. Maximally dissimilar regions are computed by finding the
100 spectra best correlated to each spectrum in the key set of
maximally dissimilar spectra. The maximally dissimilar regions
are averaged into super pixels. All pixels above the S/N
threshold but not included in the sets of maximally dissimilar
regions are averaged into an additional super pixel. This
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additional super pixel is included in order to ensure that low
intensity signals in the background are included in the spatially
compressed image so that it accurately represents the full
image.

Extension of Separable Least Squares. Kinetic modeling
using separable least squares (SLS) is based on the separation
of linear parameters such as the concentrations at time zero (t0)
from the set of nonlinear parameters (rate constants) describing
the change in concentration over time.10 This approach of
separating linear and nonlinear parameters is only applicable to
kinetic mechanisms of first-order reactions.10 In this work, the
SLS approach is specifically applied to the mechanism of first-
order decay. The set of basis functions, F, that describe the
temporal change in concentration for the mechanism of first-
order decay for z species are computed using Eq. 3:

Fðm 3 zÞ ¼ e�tk1 je�tk2 j � � � je�tkz½ � ð3Þ

where t is time and kz is the rate constant for the zth specie.
A brief discussion of the data organization methods and the

underlying concepts employed in this algorithm is necessary in
order to describe the extension of the SLS method utilized in
this investigation. The linear additive model for the spectral
image data is expressed in Eq. 4:

Di
ðm 3 nÞ ¼ Ci

ðm 3 zÞS
T
ðz 3 nÞ þ Ei

ðm 3 nÞ ð4Þ

where Di is the set of temporally resolved spectra in the ith
spatial pixel in the image (m time-resolved spectra by n spectral
wavelengths), Ci is the matrix of temporally resolved
concentration profiles for the z fluorophores in the ith pixel,
S is the matrix of resolved pure-component spectral responses,
and Ei is an error matrix for the ith pixel. The entire set of
temporally resolved spectra in the ith spatial pixel, Di, is
represented as a column vector, di

vecðm�n 3 1Þ, using Eq. 5:

di
vec ¼ vecðDiÞ ð5Þ

where vec(X) transforms X into xvec with one column stacked
onto the next. The set of z basis functions, F, describing the
temporal change in concentrations are combined with the z
pure-component spectral responses at the jth wavelength, sj, to
form Uj as shown in Eq. 6:

Uj ¼ F diagðsj;Þ ð6Þ

where diag(x) transforms x into a square matrix with x along
the diagonal and zeros elsewhere. The set of basis functions
combined with the pure-component spectral responses for all n
spectral wavelengths can be augmented to formulate Ustack

shown in Eq. 7:

Ustack ¼ UT
1 jUT

2 j � � � jUT
n

� �T ð7Þ

The standard linear additive model can easily be expanded to
describe all i spatial pixels simultaneously as shown in Eq. 8:

ðD1ÞTjðD2ÞTj � � � jðDiÞT�T ¼ ½ðC1ÞTjðC2ÞTj � � � jðCiÞT
h iT

ST

ð8Þ

where Di is the set of temporally resolved spectra at spatial pixel
i, and Ci represents the corresponding set of z temporally
resolved concentration profiles. Similarly, the set of i vectorized

temporally resolved spectra, [d1
vec j d2

vec j � � � j di
vec], can be

represented by Ustack (described in Eq. 7) and the matrix of
concentrations at time t0, C0. This relationship is shown in Eq. 9:

d1
vecjd2

vecj � � � jdi
vec

� �
ðm�n 3 iÞ ¼ Ustackðm�n 3 zÞC0ðz 3 iÞ

þ e1
vecje2

vecj � � � jei
vec½ � ð9Þ

In C0, the rows correspond to the number of fluorophores, z, in
the system and the columns correspond to the i spatial pixels
being analyzed. As described in the previously reported
implementation of the SLS algorithm,10 the linear parameters
(concentrations of all fluorophores at t0) for i multivariate data
sets are estimated by performing the linear least squares step in
Eq. 10 while the nonlinear parameters (rate constants) are
estimated using a nonlinear least squares method.

Ĉ0 ¼ Uþstack d1
vecjd2

vecj � � � jdi
vec

� �
ð10Þ

In Eq. 10, the Ĉ0 indicates the least squares estimate and þ

represents the pseudo inverse of the matrix. As in the previous
work, we use a fast combinatorial nonnegative least squares
(fc-nnls) algorithm to solve Eq. 10.18

In the extension of the SLS algorithm presented here, several
first-order decays are needed to describe the temporal changes
in concentration of each fluorophore. For the photobleaching
experiments modeled in this investigation, we hypothesize that
each fluorophore can exist in multiple environments with
indistinguishable spectral responses, each of which decays by a
different first-order process to yield invisible (bleached)
species. Consider the following two-component example for
fluorophore A and B. A mechanism can be postulated with u
first-order decays

A1!
kA1

Abð1Þ;A2!
kA2

Abð2Þ; � � � ;Au!kAu
AbðuÞ;

describing fluorophore A and v first-order decays and

B1!
kB1

Bbð1Þ;B2!
kB2

Bbð2Þ; � � � ;Bv!
kBv

BbðvÞ;

describing fluorophore B such that the total number of species
z ¼ u þ v.

An algorithmic approach to fitting the kinetic mechanism
proposed above to i temporally resolved pixels is now
described. Random numbers uniformly distributed on the
interval 0 to 1 were used as initial estimates of the model
parameters, which are rate constants (kA1, kA2, . . . , kAu and kB1,
kB2, . . . , kBv) and concentrations C0(z3i) at t0 for each pixel in
the image. Using these inputs, several initialization steps are
necessary prior to model optimization. As shown in Eq. 11, the
initial parameter estimates for specie A1 are used to construct
temporal concentration profiles, CA1 where c0(A1) is the
corresponding row from C0(z3i).

CA1

ðm 3 iÞ ¼ e�tkA1 c0ðA1Þ ð11Þ

Temporally resolved concentration profiles CA1 , CA2 , . . . , CAu

and CB1 , CB2 , . . . , CBv are constructed for each specie in this
manner. The overall temporally resolved concentration profile
for each fluorophore in each pixel is simply the sum of the
profiles for each sub-specie in Eq. 12:

CA ¼ CA1 þ CA2 þ � � � þ CAu ð12Þ
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The ith column of CA is represented as cA
i , which is the

temporally resolved concentration profile for specie A in the ith
pixel. The matrix of concentrations, CA, is represented as a
column vector, cA

vec using Eq. 13:

cA
vec ¼ vecðCAÞ ð13Þ

and the same procedure can be used to represent CB as a
column vector, cB

vec. The matrix of concentration profiles,
CTotal, which corresponds to [(C1)T j (C2)T j � � � j (Ci)T]T in Eq.
8, is then formulated using Eq. 14:

CTotal
ðm 3 2Þ ¼ cA

vecjcB
vec½ � ð14Þ

Given the relationship in Eq. 8, the pure-component spectra, S,
are determined using the linear least squares step in Eq. 15:

Ŝ
T ¼ ðCTotalÞþ D1jD2j � � � jDi

� �T ð15Þ

Again the fc-nnls algorithm is used to implement nonegativity
constraints in performing this linear least-squares step.18 For
the example mechanism described above, the kinetic analysis
gives the pure-component spectra shown in Eq. 16 in which sA

is the spectral contribution from A and sB is the spectral
contribution from B.

Sðn 3 2Þ ¼ ½sAjsB� ð16Þ

This last step concludes the initialization process for the SLS
algorithm, and the optimization procedure follows.

The estimated pure-component spectra and initially estimat-
ed rate constants are used in the subsequent optimization steps.
The basis functions (F) are constructed using the estimated rate
constants and Eq. 3, giving the functions shown in Eq. 17:

Fðn 3 zÞ ¼ e�tkA1 je�tkA2 j � � � je�tkAu je�tkB1 je�tkB2 j � � � je�tkBv½ � ð17Þ

where e�tkA1 produces the column vector describing the
temporal changes in concentration for specie A1, e�tkA2

produces the column vector describing the temporal changes
in concentration for specie A2, and so forth. The matrix S
shown in Eq. 16 is expanded to Eq. 18 in order to correspond
to the set of basis functions proposed by the mechanism:

Sexpandðn 3 zÞ ¼ ½sAjsAj � � � jsAjsBjsBj � � � jsB� ð18Þ

F and Sexpand defined in Eqs. 17 and 18, respectively, are used
in Eqs. 6 and 7 to formulate Utack, which is subsequently used
in Eq. 10 to solve for the linear parameters, C0. Equations 11
through 14 are used to formulate CTotal, which is used in Eq. 15
to update S. The pure-component spectra, S, are then
normalized to unit length at each cycle of the iteration, and
the concentration profiles, CTotal, are subsequently scaled using
the inverse of the spectral normalization constant. The
nonlinear parameters, kz, are subsequently estimated by using
a nonlinear least-squares solver to minimize the residuals
shown in Eq. 19, where CTotal is a function of rate constants kz:

ðD1ÞTjðD2ÞTj � � � jðDiÞT
h iT

� CTotalST

����

���� ð19Þ

Several of the equations and steps in this section have been
expressed using an example mechanism with two compo-

nents, A and B, but the basic concepts in these equations and
steps apply to more general first-order kinetic mechanisms. In
the kinetic fitting process, all rate constants can be optimized
or a subset of the rate constants can be optimized while others
are held constant. In many of the mechanisms proposed and
tested in this work, the rate constants for several species are
constrained to equal zero. This constraint assumes that the
fluorophore is present in an environment that undergoes an
undetectable amount of photobleaching during the exposure
time of the experiment. This is just one example of a
mechanism that can be fit using the SLS algorithm, and its use
is further discussed in later sections.

EXPERIMENTAL

Cell Sample Preparation. The first sample that was imaged
in this investigation consisted of human embryonic kidney cells
(HEK 293) that were grown on No. 1.5 microscope cover slips
(0.017 mm thick) to a density of 50%. The cells were then
transiently transfected with plasmids expressing fluorescence-
fusion proteins. The proteins, inhibitor kappa B kinase alpha
(IKKa) and mitochondrial antiviral signaling protein (MAVS),
were labeled with enhanced green fluorescent protein (GFP)
and enhanced yellow fluorescent protein (YFP), respectively,
using standard protocols with Lipofectamine 2000 reagent.19

The cells were then fixed in a 3.7% paraformaldehyde solution
of phosphate buffered saline (PBS) at room temperature for 15
minutes. After fixation, the cells were rinsed three times with
PBS and air dried. The cover slip with the cells was then
mounted on the microscope slide with DAKO fluorescent
mounting medium. The temporally resolved hyperspectral
image (18 repeated 2D image scans) of this sample will be
referred to as Image 1.

The second sample that was imaged consisted of human
A549 pulmonary type II epithelial cells. These cells were
transiently transfected using the Amaxa Biosystems Nucleo-
fector I according to the manufacturer’s instructions.20 As in
the first sample, GFP labeled the IKKa protein and YFP was
attached to the MAVS protein. In this case, the transient
transfection was performed in solution and the transfected cells
were then plated onto No. 1.5 cover slips. The cells were
washed three times with PBS and then fixed at room
temperature for 15 minutes in a PBS solution containing
3.6% paraformaldehyde with 5% sucrose added. The fixed
sample was then washed three times with PBS, dried, and then
mounted to the microscope slide with permafluor. The
temporally resolved hyperspectral image of this sample (18
repeated 2D image scans) will be referred to as Image 2.

FIG. 1. In this proposed kinetic mechanism, each fluorophore YFP, GFP, and
autofluorescence (Auto) can exist in up to three different environments. The
fluorophores readily undergo photobleaching by first-order decays of differing
rate constants in the first two environments while the fluorophores in the third
environment experience negligible photobleaching during the time of the
experiment, i.e., rates are 0. At least a single first-order decay is necessary to
adequately model each fluorophore, yielding 64 possible variants of different
combinations of fluorophores and environments.
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Simulated Image. A noise-free simulated image was
constructed from the pure-component spectra, initial concen-
trations, and the reaction mechanism and similar rates obtained
from the analysis of Image 1 (see Results Section and Fig. 2b).
Poisson and read noise of the hyperspectral confocal
fluorescence microscope was added to the noise-free simulated
image to produce the final simulated image. The percent error
in rate constants in Eq. 20 is the figure of merit used to
compare a model estimated rate constant, k̂, with the true
value, k:

rate constant ð% errorÞ ¼ 100 3
ðk � k̂Þ2

k2

" #1=2

ð20Þ

The spectral lack of fit (LOF) described in Eq. 21 is used to
compare a model-estimated pure-component spectrum, ŝ, with
the true spectrum, s:

% LOF ¼ 100 3

Xn

j¼1

ðsj � ŝjÞ2

Xn

i¼1

s2
j

2

66664

3

77775

1=2

ð21Þ

The accuracy of the estimated concentrations for a given
chemical species, ĉi, is compared to the true concentrations, ci,
using the mean average deviation shown in Eq. 22 where n is
the number of pixels:

mean average deviation ¼

Xn

i¼1

jci � ĉij

n
ð22Þ

Image Acquisition. The hyperspectral confocal fluores-
cence microscope developed at Sandia National Laboratories3

was use to acquire all images in this investigation. Image 1 was
acquired using the 203, NA 0.75 plan apochromat objective
(Nikon) with a 0.5 nm x-step and 0.48 nm y-step size. Image 2
was acquired using the 603, NA 1.4 apochromat objective
(Nikon) with a 0.26 nm x-step and 0.24 nm y-step size. Several
preprocessing steps are necessary after data acquisition. The
image and dark current data are despiked to remove cosmic
spikes. Detector offsets are first accounted for by subtracting
the first eigenvector corresponding to the scores of the despiked
dark image from the original despiked image. Any remaining
detector offset is estimated by averaging data points 5–15
where no light reaches the detector, and this average offset is
subtracted from the preprocessed spectra.21

RESULTS AND DISCUSSION

The two experimental temporally resolved hyperspectral
images and the simulated image were modeled using the
systematic kinetic modeling approach developed in this work.
The systematic approach developed here consists of (1)
spectral preprocessing steps; (2) data compression including
thresholding, selecting maximally dissimilar regions, and pixel
averaging; (3) kinetic modeling of multiple plausible mecha-
nisms; (4) selection of the most parsimonious and statistically
sufficient model; and (5) extrapolation from the compressed
image back to the full image.

The preprocessing and image compression steps have been
discussed above under the headings ‘‘Spatial image compres-
sion’’ and ‘‘Image acquisition’’, respectively. The resulting
spatially compressed image is kinetically modeled with several
plausible mechanisms using the extended SLS method
discussed above. After sample treatment and preliminary

FIG. 2. Results from the kinetic modeling of a simulated image. (a) and (b) are proposed mechanisms, and their respective kinetic modeling results are shown in (c)
and (d). The results from the kinetic modeling of these mechanisms are mathematically indistinguishable.
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analysis with PCA, it was determined that three fluorophores
GFP, YFP, and autofluorescence (Auto) were present in both
experimental images. In an initial investigation of the
experimental images, it was apparent that kinetic modeling
with a single first-order decay describing each fluorophore was
not adequate. Investigations into the photostability of fluo-
rophores are discussed in the literature, and it is common to use
multiple exponentials to describe the photobleaching pro-
cess22–25 including that of fluorescent proteins.26,27 Two
proposed explanations for this observation are non-uniform
illumination of the sample volume28 and heterogeneity in the
population of the fluorophore.29,30

In light of our initial observations and insights from the
literature, we propose a more complex system of models in
which each fluorophore is present in several different
environments within the image. The presence of each
fluorophore in different environments could cause multiple
first-order kinetic photobleaching rates without affecting the
spectral emission shape of the fluorophore. Building on this
assumption, multiple different models were tested with each
fluorophore described by up to three different local environ-
ments. The most complex model is shown in Fig. 1. For
example, YFP is observed in environments YFP1, which
photobleaches to YFPb(1), YFP2, which photobleaches at a

different rate to YFPb(2), and YFP0, which experiences
negligible photobleaching during the exposure time of the
experiment. A minimum of one first-order decay (YFP1, GFP1,
and Auto1) is necessary to describe each fluorophore, giving 8
possible combinations of secondary first-order decay species
(YFP2, GFP2, and Auto2) and 8 possible combinations of
photobleach resistant species (YFP0, GFP0, and Auto0), or 8 3

8 ¼ 64 total combinations.
A major challenge in the kinetic modeling of these complex

images is selecting the most parsimonious statistically
sufficient mechanism. Due to the heteroscedastic noise
structure in hyperspectral confocal images, analysis of spectral
residuals in the training and test sets is not useful in model
selection. Segmented cross-validation31 also fails to provide
useful insights. A methodical approach to selecting the best
mechanism is implemented in this work. All 64 plausible
mechanisms are fit to the compressed image data. Typically,
many of the proposed mechanisms fit the data equally well,
resulting in several statistically sufficient models. Due to
inconsistencies with well-known characteristics of pure-
component fluorescence spectra, many of the mechanisms
can be discarded. For example, fluorescence spectra are not
expected to exhibit multiple peaks in the emission band. In
addition we know the approximate spectral emission shapes of

FIG. 3. Summary of compression of Image 1. (a) Integrated intensity representation of initial time slice (black represents high intensity). (b) Maximally dissimilar
spectra in the image. (c) Maximally dissimilar regions with titles corresponding to the symbol representing the maximally dissimilar spectra in (b). (d) Initial spectra
for all super pixels including an additional super pixel corresponding to the average of all pixels above the threshold but not included in the maximally dissimilar
regions (diamond symbols).
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the GFP, YFP, and autofluorescence from the literature, and the
estimated pure-component spectra should resemble these
emission shapes from the literature. Thus, these properties of
the emission spectra can aid in the selection of the most
appropriate kinetic mechanisms. In addition, the physical
relevance of each model can be determined by inspecting the
rate constants. Mechanisms resulting in very fast rate constants
(greater than 10) are discarded because they are not observable
on the time scale of these experiments. Mechanisms resulting
in negative rate constants are discarded as well. Additional
kinetic modeling of the mechanisms that provide physically
relevant pure-component spectra and rate constants were
performed with 10 random initializations. The standard
deviation in the model parameters from several random
initializations is used to determine how well the model
parameters are defined. The simplest mechanism with consis-
tently well-defined parameters (smaller standard deviations)

and residuals at the noise level in the data is considered to be
the most parsimonious and statistically sufficient model.

Once a mechanism is selected, the kinetic model of the
compressed image is used to estimate the concentration map of
the full image by extrapolation. The estimated pure-component
spectra and rate constants are used in Eqs. 7, 8, and 11 to
estimate the concentrations at t0 for the full image. The
estimated concentrations at t0 are then used to estimate the
concentration profiles for each pixel in the full image.

Kinetic Modeling of a Simulated Image. It is important to
test our systematic kinetic modeling approach using an image
with a known kinetic mechanism and known parameter values
to demonstrate its usefulness. Therefore, the simulated image
was analyzed using the systematic approach developed in this
investigation. The preprocessing steps were not necessary for
this image since the spectral image was generated from data
that were already preprocessed. The image was compressed to

FIG. 4. Most parsimonious and statistically sufficient mechanism (a) and corresponding pure-component spectra (b) from kinetic modeling of Image 1. Spatial
concentration maps for the initial time slice (c) from the extrapolation of the kinetic model to the full image. YFP, GFP, and Auto are represented by blue, green, and
red, respectively.
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four super pixels composed of three maximally dissimilar
regions and an average of all other pixels above the threshold.

The compressed image was analyzed with all 64 possible
models selected from the presence or absence of the
Environment 2 and Environment 3 reactions summarized in
Fig. 1. The two most physically relevant models are
represented in Figs. 2a and 2b. The resolved pure-component
spectra and estimated rate constants corresponding to Figs. 2a
and 2b are presented in Figs. 2c and 2d. The mechanisms are
nearly identical (i.e., rate k1 is nearly 0, which is equivalent to a
YFP0 specie that does not photobleach in the time of the
experimental measurement). The models were randomly
initialized 10 times and the model in Fig. 2b was found to
have the most well-defined model parameters (i.e., smallest

standard deviation). Compared to the model shown in Fig. 2a,
the model shown in Fig. 2b is simpler and thus more
parsimonious. The model in Fig. 2b corresponds to the true
underlying model used in generating the simulated data set.
The strategies used for selecting the best model in Fig. 2 are
used throughout the rest of this paper.

For the simulated data, the lack of fit for the model-estimated
pure-component spectra relative to truth is 0.4%, 0.4%, and
0.3% for YFP, GFP, and Auto, respectively. A comparison of
the model estimated rate constants to truth is included in Table
I. The pure-component spectra and rate constants from kinetic

FIG. 5. Summary of compression of Image 2. (a) Integrated intensity representation of initial time slice (black represents high intensity). (b) Maximally dissimilar
spectra in the image. (c) Maximally dissimilar regions with titles corresponding to the symbol representing the maximally dissimilar spectra in (b). (d) Initial spectra
for all super pixels including an additional super pixel corresponding to the average of all pixels above the threshold but not included in the maximally dissimilar
regions (diamond symbols).

TABLE II. Comparison of true (actual) and model estimated concen-
trations at t0 from the kinetic modeling of the simulated image.

Species

Actual Absolute deviation

Mean Median Min Max Mean Median

YFP1 19.5 10.4 0.0 332.1 1.5 1.1
GFP1 14.2 6.4 0.0 238.1 1.1 0.8
Auto1 18.2 17.5 0.0 73.6 0.8 0.7
YFP0 1.8 0.2 0.0 52.5 0.4 0.2
GFP0 3.1 1.2 0.0 42.3 0.4 0.3
Auto0 13.5 12.8 2.4 74.9 0.4 0.3
Auto2 3.5 3.1 0.0 25.3 0.8 0.6

TABLE I. Comparison of true (actual) and estimated rate constants
from the kinetic modeling of the simulated image and % Error from
Eq. 20.

Rate constant Actual Estimated % Error

k1 0.52 0.52 0.2
k2 0.54 0.54 0.1
k3 0.41 0.41 1.0
k4 6.62 7.32 10.5

268 Volume 63, Number 3, 2009



modeling of the compressed image were used to estimate the
concentration profiles for the full image. A summary of the
actual concentrations for the full image at t0 as well as a
summary of the deviations of the estimated concentrations are
shown in Table II. All figures of merit demonstrate that the
model-estimated parameters are accurate.

Kinetic Modeling of Image 1. The spectral image was
preprocessed as described previously, and an integrated
intensity representation of the image is included in Fig. 3a.
The image thresholding excluded less than 1% of the pixels in
the image. Three maximally dissimilar spectra (shown in Fig.
3b) and subsequently three maximally dissimilar spatial regions
were formulated. The maximally dissimilar regions and all
other pixels above the threshold were averaged into four super
pixels. The maximally dissimilar regions and corresponding
representative spectra (spectra from the first time slice) are
shown in Figs. 3c and 3d, respectively. A representative
spectrum for the fourth super pixel is also included in Fig. 3d.

The compressed image was kinetically modeled using all 64
plausible reaction mechanisms from the set of reaction
mechanisms that could be formulated from various combina-
tions of reactions that are summarized in Fig. 1. The
mechanisms that were selected to be the most physically
relevant were randomly initialized 10 times. The mechanism
presented in Fig. 4a was selected to be the most parsimonious
and statistically sufficient mechanism. This model provided
estimated spectra consistent with known pure-component
spectra and residuals at the noise level in the data. The
resulting pure-component spectra and rate constants are
presented in Fig. 4b and were used to estimate concentration
profiles for the full image. The resulting spatial concentration
maps for the initial time slice are shown in Figs. 4c.

Kinetic Modeling of Image 2. An integrated intensity
representation of the image is shown in Fig. 5a. The usual
preprocessing steps were performed prior to data compression.
Three maximally dissimilar spectra were selected and are

FIG. 6. Most parsimonious and statistically sufficient mechanism (a) and corresponding pure-component spectra (b) from kinetic modeling of Image 1. Spatial
concentration maps for the initial time slice (c) from the extrapolation of the kinetic model to the full image. YFP, GFP, and Auto are represented by blue, green, and
red, respectively.
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shown in Fig. 5b. The corresponding maximally dissimilar
regions (shown in Fig. 5c) and all other pixels above the
threshold were averaged into four super pixels. The spectra
from the initial time slice for all super pixels are shown in Fig.
5d.

The super pixels were again kinetically modeled using the
64 mechanisms selected from the set summarized in Fig. 1.
Several of the plausible mechanisms resulted in physically
relevant rate constants and pure-component spectra. Each
mechanism with physically relevant results was randomly
initialized 10 times. The mechanism in Fig. 6a was determined
to be the most parsimonious and statistically sufficient
mechanism. This model provided estimated spectra consistent
with known pure-component spectra and residuals at the noise
level in the data. The resulting rate constants and pure-
component spectra presented in Fig. 6b were used to estimate
concentration profiles for the full image, and the resultant
spatial concentration maps for the initial time slice is shown in
Fig. 6c.

CONCLUSION

In this investigation, a systematic procedure for performing
kinetic modeling on temporally resolved hyperspectral images
was developed and applied to a simulated image and two
experimental images. The physical phenomenon of photo-
bleaching has been modeled in these images. In order to
properly model the photobleaching kinetics, it was essential to
compress the data. The initial step in data compression required
the introduction of the selection of a set of maximally
dissimilar spectra through a method based on the concepts
originally developed for iterative key set factor analysis.14 This
technique helped retain a maximal amount of useful informa-
tion during data compression. An extension of a previously
presented separable least squares modeling procedure was
implemented here and used to kinetically model hyperspectral
image data with complex first-order kinetic mechanisms. It was
observed that some mechanisms are mathematically indistin-
guishable or very similar. Due to the nature of the Poisson
noise in hyperspectral microscope images, a major challenge in
this work was selecting the most parsimonious and statistically
sufficient mechanism. To that end a method to evaluate the
pure-component emission spectra and to compare how well the
mechanistic parameters are defined was developed.

The kinetic modeling performed in this research has
provided us with new insights into the kinetic mechanisms of
photobleaching. We initially assumed that each fluorophore
might be represented as a single exponential decay. However,
our kinetic modeling of the hyperspectral images led us to the
conclusion that fluorophore photobleaching kinetics are
significantly more complex than a simple exponential decay.
In fact, our kinetic modeling of the temporally resolved
hyperspectral images during photobleaching demonstrated that
several first-order decays were often needed for each
fluorophore to adequately model the data presented in this
work. In addition, the kinetic fitting was consistent with a
portion of the fluorescence not being subject to photobleaching
within the time scale of the experiments. These kinetic results
have led us to the hypothesis that different decay curves for
each fluorescent specie are due to the presence of the
fluorophore in different environments within the sample. Thus,
a spatial map of each fluorophore in the various environments
is obtained directly from the kinetic modeling process. It would

be useful in a future experiment to investigate a system with a
single fluorophore in several different spatially distinct
environments. That experiment would help test our hypothesis
of using mechanisms with several first-order decays to describe
the photobleach kinetics of a single fluorophore.
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